Chapter 1 ERDŐS - KO - RADO THEOREMS OF HIGHER ORDER
نویسنده
چکیده
We survey conjectured and proven Ahlswede-type higher-order generalizations of the Erdős-Ko-Rado theorem.
منابع مشابه
Elementary Techniques for Erdős–Ko–Rado-like Theorems
The well-known Erdős–Ko–Rado Theorem states that if F is a family of k-element subsets of {1, 2, . . . , n} (n ≥ 2k) satisfying S, T ∈ F ⇒ |S ∩ T | ≥ 1, then |F| ≤ ( n−1 k−1 ) . The theorem also provides necessary and sufficient conditions for attaining the maximum. We present elementary methods for deriving generalizations of the Erdős– Ko–Rado Theorem on several classes of combinatorial objec...
متن کاملTheorems of Erdos-Ko-Rado type in polar spaces
We consider Erdős-Ko-Rado sets of generators in classical finite polar spaces. These are sets of generators that all intersect non-trivially. We characterize the Erdős-Ko-Rado sets of generators of maximum size in all polar spaces, except for H(4n+ 1, q) with n ≥ 2.
متن کاملThe Erdős-Ko-Rado basis for a Leonard system
We introduce and discuss an Erdős–Ko–Rado basis of the vector space underlying a Leonard system Φ = ( A;A∗; {Ei}i=0; {E∗ i }i=0 ) that satisfies a mild condition on the eigenvalues of A and A∗. We describe the transition matrices to/from other known bases, as well as the matrices representing A and A∗ with respect to the new basis. We also discuss how these results can be viewed as a generaliza...
متن کاملErdos-Ko-Rado theorems for simplicial complexes
A recent framework for generalizing the Erdős-KoRado Theorem, due to Holroyd, Spencer, and Talbot, defines the Erdős-Ko-Rado property for a graph in terms of the graph’s independent sets. Since the family of all independent sets of a graph forms a simplicial complex, it is natural to further generalize the Erdős-Ko-Rado property to an arbitrary simplicial complex. An advantage of working in sim...
متن کاملErdös-Ko-Rado and Hilton-Milner Type Theorems for Intersecting Chains in Posets
We prove Erdős-Ko-Rado and Hilton-Milner type theorems for t-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR theorem (for all n) using the shift met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004